

Biophysical Modelling (Levels 1 and 2)

Project: Advancing the SEEA Experimental Ecosystem Accounting

Contents

- Beginner level (level 1)
 - Learning objectives
 - Presentation
 - Exercise sheet
 - Answer sheet
- Intermediate level (level 2)
 - Learning objectives
 - Presentation
 - Exercise sheet
 - Answer sheet

© wiktor bubniak / Fotolia.com2

Level 1: Learning Objectives

- Understand the spatial units used in Ecosystem Accounting and the role of biophysical modelling in support of Ecosystem Accounting
 - Spatial Units
 - The role of spatial and of temporal modelling
- Required prior knowledge: the concept of ecosystem services

The three spatial Units in Ecosystem Accounts

Land cover map of Area X

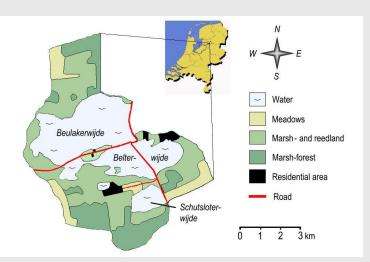
Scale: 1:50,000

Pine forest

Deciduous forest

- Ecosystem Accounting
 Unit (EAU) = a country,
 province or watershed
- Land cover/ecosystem functional unit (LCEU) = e.g. Deciduous forest
- Basic Spatial Unit = a grid cell / pixel
- Ecosystem services flow, ecosystem condition and ecosystem asset needs to be defined for every pixel individually (i.e. mapped)

Biophysical modelling


- Biophysical modelling for the purpose of ecosystem accounting is required to:
 - Capture the spatial variability of ecosystems
 - Capture the temporal variability of ecosystems

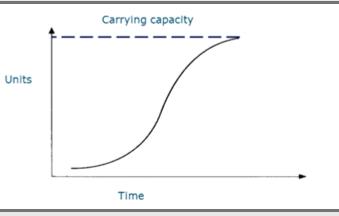
Modelling: make it as simple as possible, but not simpler (after Einstein)

Spatial variability in Ecosystems

 Ecosystems vary across space because of differences in altitude, soils, vegetation, climate, etc. and because of spatial differences in the management of ecosystems (e.g. as a function of distance to road or settlement)

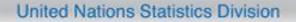
The Wetland ecosystem 'De Wieden', the Netherlands consists of different zones with different vegetation, humidity, soils, etc. (Source: Hein et al., 2006)

Modelling spatial variability


- Modelling spatial variability is required because
 - ecosystem accounting aims to record flows of ecosystems and stocks of ecosystem capital; and
 - both flows and stocks can be spatially very heterogeneous.
- Flows and stock modelling usually requires the combination of spatial datasets (maps) and point-data(e.g. from surveys).
- To combine these datasets, and to understand ecosystem flows and assets in areas with no data, a spatial model can be deployed.

Modelling temporal variability

- Temporal models are required to analyse ecosystem assets
- The Net Present Value of an ecosystem asset is the sum of the net, current and discounted future values generated by the ecosystem
- These values depend upon the capacity of the ecosystem to regenerate, for instance the regrowth of the forest after harvesting.
- Temporal models reveal the regeneration/regrowth of the ecosystem


The increase in a biological resource often follows an S-curve, where growth levels approach zero of at the carrying capacity.

Exercise 1

What are the three spatial units in Ecosystem Accounting, and what is their meaning ?

Exercise 2

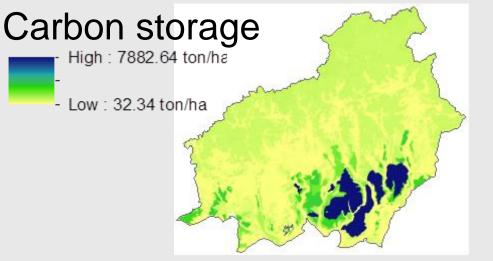
- Which processes or factors determine changes in the stock of a (renewable) ecosystem asset, for instance a timber resource in a natural forest?
- Which of these factors requires temporal modelling in order to analyse it?

Level 2. Biophysical modelling

- Learning objective:
 - To understand which types of modelling approaches can be used for the spatial and temporal modelling of ecosystem services in an accounting context
- Prior knowledge
 - Biophysical modelling level 1

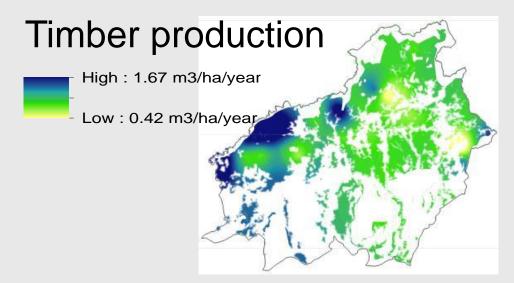
Spatial modelling

- Useful to estimate ecosystem services flows and ecosystem assets across spatial units in the landscape
- In spatial models: ecosystem condition indicators, ecosystem services flow and ecosystem assets are defined and analysed for each spatial unit
- This requires Geographical Information Systems, where the spatial unit is usually a pixel (i.e. a grid cell in a grid, with specific x and y coordinates)



Four types of spatial models

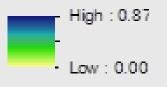
- Look-up tables: specific values for an ecosystem service or other variable are attributed to every pixel in a certain class, usually a land cover class.
- Statistical approaches: relate ecosystem services flow, asset or condition to explanatory variables such as soils, land cover, climate, distance from a road, etc., using a statistical relation derived from survey data.
- Geostatistical interpolation: techniques such as kriging rely on statistical algorithms to predict the value of un-sampled pixels on the basis of nearby pixels in combination with other characteristics of the pixel.
- Process based modeling: involves predicting ecosystem services flows based on a set of environmental properties, management variables and/or other spatial data sources, based on modelling of the ecological and/or ecosystem management processes involved.

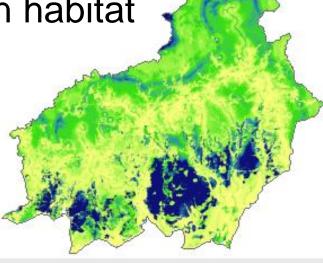

Ecosystem services Central Kalimantan

Model used

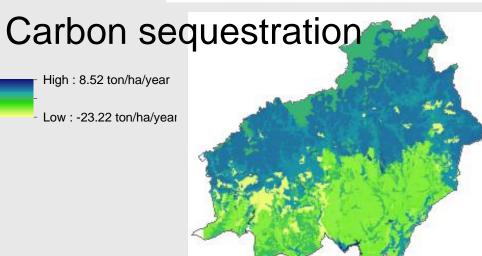
Look Up Tables (every

land cover class is attributed a specific carbon storage value)


Kriging (values are interpolated from samples)


Source: Sumarga and Hein, 2014

Ecosystem services Central Kalimantan


Orangutan habitat

Model used:

Statistical model (Maxent) (habitat suitability predicted on the basis of forest cover, distance from road, etc.)

Process-based Model

(primary ecosystem production minus soil respiration)

Source: Sumarga and Hein, 2014 17

Modelling ecosystem services

- Can be done in stand-alone GIS packages such as ArcGIS or Q-GIS (freeware) or
- Modelling packages such as ARIES or InVEST
- Advantages of ARIES and InVEST is that some modules are pre-defined;
- Advantage of standard packages is that they are fully flexible and not dependent upon (knowledge of) a specific modelling program

Question 1

- Which four types of spatial models can be distinguished?
- What is the differences between them? Explain in your own words.

Four types of spatial models

- Look-up tables: specific values are attributed to every pixel in a certain class, usually a land cover class.
- Statistical approaches: ecosystem services flow, asset or condition is related to explanatory variables such as soils, land cover, climate, distance form a road, etc., using a statistical relation derived from survey data.
- Geostatistical interpolation: techniques such as kriging rely on statistical algorithms to predict the value of un-sampled pixels on the basis of nearby pixels in combination with other characteristics of the pixel.
- Process based modeling: involves predicting ecosystem services flows based on modelling of the ecological and/or ecosystem management processes involved.

Question 2

- Select one or two ecosystem services relevant for your case study area of interest
 - Which different sets of data are required to map this service?
 - How can these datasets be combined?

Level 2: Biophysical Modelling

References

- Hein, L., Van Koppen, K., De Groot, R. S., & Van Ierland, E. C. (2006). Spatial scales, stakeholders and the valuation of ecosystem services. Ecological Economics, 57(2), 209-228.
- Sumarga, E. And Hein, L., 2014. Mapping Ecosystem Services for Land Use Planning, the Case of Central Kalimantan. Environmental management, pp. 1-14.

Further Information

- SEEA Experimental Ecosystem Accounting (2012)
- SEEA-EEA Technical Guidance (forthcoming)
 - Detailed supporting document on "Biophysical Modelling" by Lars Hein

Evaluation of the training module

- Please complete the evaluation form for this module
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

Acknowledgements

 This project is a collaboration of The United Nations Statistics Division, United Nations Environment Programme and the Secretariat of the Convention on Biological Diversity and is supported by the Government of Norway.

